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1, INTRODUCTION

The exact solution of a time~optimal problem for a

linear, normal, nth

-order system involves an (n-l)-dimen-
sional surface as a switching criterion for the control
variable, Even for a third-order system an engineering
realization of the time-optimal controlier is very com-
plicated, An example of such a design is given by Athans
and Falb (1), For more practical engineering applications
simpler designs for higher order systems were developed
using suboptimal controllers, In most cases the great
simplification obtained for suboptimal systems well com-
pensated for the small deviation from optimality.

The basic idea used in most suboptimal designs is
that the higher order system can be approximated by &
second-order system, Among others, Kalman used this ap-
proach and derived a switching curve for a third-order
system (4), His method essentially consists of isolating
the system modes by a coordinate transformation and then
Letting the two domirnant roots approximately characterize
the d° ric behavior of the system, Thus, Kalman implicitly
asg “e higher order system has two roots which
are muc. . important than the rest of the roots in de-
termining the behavior of the system, This assumption 1is
the starting point for the method used in this thesis to

analyze higher order systems,




The system under analysis contains small parameters
which will reduce the order of the system to two, when they
go to zero, For the degenerate second-order system sensi-
tivity functions with respect to these small parameters

can be written, Employing these sensitivity functions, a

nearly time-optimal solution is found by deriving a simpli-
fied switching function.

The object of this thesis is to find a method to
obtain a simplified switching function for a higher order,
time-optimal system which has the properties described in
the last paragraph, At the same time it wiil be shown how
sensitivity functions can be used to find the approximate

time response analytically,
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2. ANALYSIS AND DESIGN PROCEDURE

2,1 Formulation of Problem

Consider the following system of differential equa-

tions

m1*3 = - x3 + XI‘_

Ap¥n + - Xy +u (2.1)

where x4 are state variables, k; and k2 are constarits,
Kj are small parameters and u is the control variable,
When A4 =0 for j = 1,2,---,m the system (2-1) re-

duces to the setond~order, degenerate system

i

*2

td
1)
H

kyXy + KX, + U (2-2)

Any linear, second-order system with conatant coefficients

can be represented by equations (2-2),




For the second-order system consider the following
problem, Given some initial conditions and the constralint

u <1, find the control, u(t), which will transfer the

state of the system to the origin of the phase plane in
minimum time, The well-known solution to this problem in-
volves a switching curve that divides the phase plane into

two halves, Let thie switching ~urve be given by

£ (xy,%p) = 0 (2-3)

The exact solution of the same problem for the nth-
order system (2-1) involves, as mentioned earlier, (n-1)-
dimensional switching surfaces in the n-dimensional phase
space, However, it is reasonable to think that for smail

29 the solution of the nth-order system should be similar
to that of the second-crder system, In other words for a
nearly time-optimal solution for the nth-order system the
switching functions can be expressed in terms of a switching
curve in the x;X,=-plane, The problem is to find this

switching curve,

2,2 Sensitivity Functions

In general the values of hj could be different as long
as they are all small enough to make the exponential tran-
sients negligible, However, there is not much loss in

generality by making the Aj’s all equal since they are
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required to be small in the first place, What "small! means
quantitatively will become clear later,
The state variables, xi(t, A) for i = 1,2, can be
approximated by
axé.(t, A)

A
xi(tgh ) = xi(t’o) + aa

A=0 (2-’4)

here the subscript of has been drcpped because they are
now assumed to be all equal, Let us define the sensitivity

functions by

Bxi(t:,h )

w T —————
i
ah -:2:0

The sensitivity functions are obtained from the following

system of equations

Y1

Y2

)

#

kywy + kowy + jig (2-5)
' 37

There are two difficulties connected with the solution
of these equations, First of all the function w;(t) is not
defined at t = 0 in all cases but it is always defined for
t > 0, For this reason special initial conditious have to
be found at t = 0% where the "+" sign indicates that t > 0

by a small amount, This problem is dealt with in chapter 3,




The second difficulty occurs at the switching time,
tg, where the term Bu/ 072 is discontinuous, Consequently

there will be a "jump" in w,(t) at t = t,. Let us denote

B.
this "Jump"' by Awg. It will also be shown in chapter 3

how

aw, = wz(ts"') - w?_(ts') (2-6)

can be computed,
Now it is possible to write the sensitivity functions
for all t > 0 and t # t_, Using equation (2-4), approxi-

mate trajectories of the nth-order system can be found,

2.3 General Form of Switching Function

th

Assume that the switching curve for the n -order

system is defined by
f(xl ,Xz, A ) =z 0

This function is unknown and has to be found ir some way.
An approximate expression of ;‘.’(x1 1X0 s 2A) in terms of the
switching function for the second-order system is given by

af( ? ?
f(xl,xz, 2) = f(xl,xZ,O) + x10%2 2 ) p (2-7)

32 5 =0

In order to simplify the potation, let us write
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Equation (2-7) can be written as
Of of
— - 2-8
f = fo + ax wl7\ + [axz sz ( )
Now 1f we make the following assumption
of
""'a"'f' = 2 i=1,2
°x1 6xi
A =0
equation (2-8) becomes
df, o £,
£=£+ WA 4+ W, 2 (2-9)
P
1 Xa
Hence, the switching function for the ntPoorder system
can be expressed in the form
f = fo + fl
where
of of

Remember that fo is the switching function for the second-
order system and fl accounts for the shift of this switch-

ing function by going to the nth-order system,




For the systems considered in this thesis, it is
possible to express the sensitivity functions as a linear
function of the xi's of the second-order systems, In

general

where the a’s and b's are constants, These constants de~
pend on initial conditions in most cases, Since a switching
curve should be independent of initial conditions, it is
not meaningful to use the constants of (2-11) in the
switching function, The usefulness of equations (2-11) lies
in the fact that they give the correct functional depend-
ence on the state variables, xi, for the approximate
switching curve (2-9) regardless of the initial conditions,

From (2-9) and (2~11) the switching function for the
nthoorder system is thus determined wizhin some undefined
constants, These unknown constants will be computed by some
other means, But first let us conusider the probiem of

finding the special initial conditions for the sensitivity

functions,
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3. SPECIAL INITIAL CONDITIONS FOR SENSITIVITY FUNCTIONS
3.1 Chang’s Method

It was mentioned that a difficulty arises in finding
the initial conditions for the sensitivity equations (2-5),
The function w,(t) may not be continuous at t = 0, To

illustrate this point consider, the simple system

3*2 = -x2 4+ u (3‘1)

with zero initial conditions and u as a step function,

When A = 0, the sensitivity equation is

The usual initial conditions for sensitivity functions with
re.pect to variable parameters are zero, But this will make
wl(t) = 0 which is obviously wrong. The trouble is that
(3-2) is not defined at t = 0, One way to avoid this diffi-
culty is to use wl(O*) as sn initial condition for (3-2).

A direct solution of (3-1) gives

Xy = ut 4 ul (e"t/% -1) (3-3)

Differentiating (3-3) with respect to A and then zetting

A = 0, we have
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A=0

Therefore a co-rect initial condition for (3-2) is
*
Wl(o ) o - U,

Chang developzd a method to find the initial condi.-
tions, wi(O*), (2), For the system (2-1) this method applies
in the following way, First the Laplace transforms are
written for all equations in (2-1), All initial conditions
are equal to zero except for x;(0) and xz(O)° But x;(0) and
xZ(O) can also be set to zero because they do not affect
the end result, Solving the transform equations for X;(s,A )

and Xz(s, 2 ) gives

xl(s, h) = u(o)
s(s2ekyseky) (M) s41)=ae(A g41)
(3-5a)
Xo(8,A) = u(0)
(s%-kys-k;) (D 8+1)-==( A s41)
(3-5b)

Remember that A = ) j for j = 1,2,-~~,m, Differentiating
(3-5a) with respect to A and then letting A = 0, we get
Bxl(s, % ) "mu(o)

= W ) = p———
a A A=0 1(8 8 ‘kza*kl




1L
The initial-value theorem gives

wy (O%) = 1im sW, (s)
1 Lim ohy

=0

Now differentiating (3-5b) with respect to A and setting

A = 0 gives

IéXgEB,?i)} = wz(s) = -nm(O)s
L 37 A=0

2
8 "kzs "kl
Again from the initial-value theorem

w2(0+) = 1im sW,(s)
S+ 00
= -mu(()).

In summary the initial conditions for the sensitivity

func:tions defined by the equations (2-5) are
o+

wo(0F) = -mu(0) (3-6)

3.2 Kokotovic'!-Rutman Structural Method

Aol B AL A S~ herme LA =~ S0 E e P A

An interesting alternative approach to determine the
initial conditions of the sensitivity functions is given by
Kokotovic'! and Rutman (5), The method consists of drawing
a block disgram of the original system and the sensitivity
system for A > 0 and then manipulating the blocks until it
is possible to let A = 0,




12

To illustrate this method, let us find the initial
conditions of the sensitivity functions for the following

system which will be used in an example later,

% = %y xl(O) =z,
*2 = x3 xZ(O) = !.'2
kq = =xgtbu x3(0) =0 (3-7)

The corresponding system of sensitivity equations is of

the form
w1 = w2
Wy = vy
Bu (
. . 3-8)
Wy = =W, - X3 + ?;3

In Figure la the original system diagram and the sensiti-
vity model are shown, Figure 1b is obtained after two
transformat’ ms, First the point of application for x5 is
moved to the other side of the integrator and a differential
operator is added in the connecting branch of the two
models, Now it is possible to let A = 0, The transfer
function from u to xj as P goes to zero is

1im 1 =1
A=+-0 As+l
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Figure 1, Determination of Initial Conditions for Wy
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The final diagram, Figure lc has the differential operator
removed by moving the point of application to the other side
of the integrator in the sensitivity model,

From Figure lc the initial conditions can be written

by inspection,
W1(0+) e 0

w2(0+) = -u(0)

3,3 Discontinuity at Switching Time

The function w2(t) is discontinuous at t=t, because
the control variable, u(t), is switching from one limiting
value to the other one instantaneously. As mentioned pre-
viously there will be a "jump" in w,(t) at t=t, and it

becomes necessavry to find
wpltgt) = wyle ¥) + Awy (3-9)

in order to solve the sensitivity equatlons,

If it is possible to find a transformation of the
system {2-1) su2h that the transformed system is a func-
tion of t-t; but otherwise has the same form and initial
conditions as the original system, the condition (3-9)
can be determined from the initial conditions c¢f the trans-
formed system, First let us show that such a transformation

exists for the system {2-1),
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The system (2-1) can be expressed in matrix form as

shown below,
x(t) = A x(t) +2 (3-10)

when x and z are n-vectors and A is an (nxn) matrix, The

matrix A is given by

— —_
0 1
0 -% 1
A = N o N (3-11)
N N\ N
AN N N\
o 1 1
O 2
0 i
__ A_l

The vector z has only one non-zero element in the nth row
which is u/a .

Let us define the new time variable, T, as

T=t-t (3-12)

The initial conditions for (3-10) are assumed to be zero.

Suppose now that there exists the following matrix equa-
tion

¥(T) = A y(T) + z (3-13)

with the initial conditions y(0) = 0, The next step is to
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find the transformation of x which will give y in (3-13).
The general solutions of (3-10) and (3~13) are

t
x(t) = f P, a (3-16)
0
T
¥(T) = u/ éA(T-p)g dp (3-15)
0

In the above equations p is a dummy veriable, Substituting
t=t, + T into (3-14) gives

T+t
A(t8+'r-p)
x(T) = e z dp

0

Trtg
At A(T-p)
= e y(T) + e z dp (3-16)

T

Solving (3-16) for y(T), we have

T
-A A(T-
y(T) = e t85(1:) + ‘j/a e ( p)g dp (3-17)

T+t8

Equation (3-17) gives the transfermation from x(t) to
y(T), so that y(T) satisfies the equation (3-13), As long
as the state twansition matrix exists, it is possible to

find this transformation,
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For the system (3-13) the sensitivity functions and
their initial conditions can be determined in the same way
a8 it has been done for the system (3-10), Only different

symbols are used, Let us denote the new sensitivity funce

tions by

S i

V() =
! 32 .

1,2

The initial conditions are
Vi(T=0") = 0
vz(r=o+) = -mu(T=0%) (3-18)

The relation between V4(T) and w;(t) can be found from
(3-16) in the following manner, For the second-order system

(2-2) the matrix A is given by

A = (3-19)

(3-20)

N

u
—
o o
| S |

Substituting (3-19)land (3-20) into (3-16), a relation
between y(T) and x(t) is obtained, Differentiating this
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relation with respect to A, we get the equations relating
Vi(T) and wy(t).
Consider the particular case when k; =k, = 0, The

solution of equation (3-16) for this case is
2

ut,
X, () = 3y (1) # t,9,(T) + 53—

X, (£) = 75(T) + ut_ (3-21)

In equations (3-21) u is considered to be constant and
continuous, The fact that it is actually discontinuous at
the switching time is accounted for by the special initial
conditions of the transformed system (3-13), With this in
mind (3-21) can be differentiated with respect to A and

the result is
Wl(t) = VI(T) + tSVZ(T)
WZ(t> = Vz(T) (3-22)

Evaluating (3-22) at t = ts+ or T = 0* and substituting
(3-18) gives

]

w (%) = - tmu(eg)

wplty") = - mu(e,*)

Since u(ts*) = «u(t=0) equations (3-23)become
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wi(tg?) = tmu(t=0)
wy(t,") = mu(t=0) (3-24)
For this particular system the "jump" in wy at the
switzhing time is
Awy = - 2mu(t=0) (3-25)

In a similar way the "jump" conditions can be derived for

other cases of the general system (2-1),
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4. SWITCHING FUNGTION FOR A PARTICULAR SYSTEM

4,1 Functional Form

The general form of the system under consideration is

given by (2-1). When Fp = k, = 0, we have the following
system

x2 = X3
7\:’c3 = eXy Moy

Akn = ~X, + U (4-1)
The corresponding second-order system for A = 0 isg
*1 = x2

%)

]

u (4-2)

Let the initial conditions be denoted by

xl(O) = rl

i

x2(0) ry (4-3)

The solution of (4~2) ig
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ur?
X = 2 + Ty t+ ry
x2 = ut + r2 (4"4)
The sensitivity equations for the system (4-2) are
3 = Ou
Wy = == 4.5
2 oA (4-3)

with the initial conditions (3-6), The solution of (4-5)

is for 0 < t < ¢t

vy -mu(0)t

Wy -mu(0) (4-6)

Comparing equations (4~4) and (4~5) one can see that

they are related in the following way
wl = 82x2 + 8.3

The constants in the above equations will vary with the
initial conditions., But the important point is that the
form of the equations (4-7) is uniquely determined for
all initial condicions,

The optimal switching function for th: system (4-2)

is

£, = x1+% Xy %] (4-8)




e e

22

Differentiating (4-8) with respect to x, and X, gives

£,

axl =1

21,

bxz = Ile (4-9)

If we substitute (4-7) and (4-9) into (2-10) we get

fl = (a2x2 + a3) A+ |x?_| b3 A (4"10)

Defining new constants (4-10) can be written as

fl = b?\xz + cA (4011)
where
X
b = a, + by =
2 3|x2|
Cc = a3

Finally the total switching function from (4-8) and (4-11)
is

f=2x + ’]2" Xy lle + bAx, + cA (4-12)

The next task is to determine the two constants b and
¢ uniquely and independent of the initial conditions, This
problem is solved in the next section,

The procedure outlined above can easily be applied to

two other cases of the general system (2-1): 1,) when
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ky + Oand ky # 0 2.} k) # 0 and ky # O and the eigen-
values of (2-2) are distinct and real, For the case of
complex eigenvalues difficulties arise because the optimal
switching curve cannot be expressed in a nice analytical
form, However, if the optimal switching curve is approxi-
mated by some analytical furnction of the state variables,

it is possible to treat this case in the same way,

4,2 Determination of Constants

In order to compute the constants b and ¢, it is
necessary to derive the equations for the approximate
trajectory of the nthoorder system as given by (2-4), In

this derivation the following initial condition will be

used,

xl(O)

i}
o

x,(0) (4-13)

The initial conditions (4-3) could also be used, Since the
final result is independent of the initial conditions, it
is more convenient to use (4-13), The mathematical analysis
is simpler with (4-13), However, the initial conditions
have to be general enough, so that every point on the
switching curve can be reached through them, This require-
ment is satisfied by (4-13).

Another simplification of the analysis is obtained by

only considering one half of the switching curve, The other
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half is determined by symmetry, By restricting ry to

positive values, the trajectories will only reach the lower

half of the switching curve,

For this case the optimal control sequence for the

system (4-2) ig 4 = (-1, +1). The solution is

For 0<t<t;

g
fLo= ":tZ:'E o
Xo = ot (4-14)
For t, st tes
X = gf-Ztsti- ‘:32*”1
Xg = £ 2t (4-15)
The solution of the corresponding sensitivity equa-
tions (4-5) with the initial conditiong (3-6) and the
"jump" condition (3-25) is
For 0<t < tgt
Wi = mt
Wy = m (4-16)

For tg < t < tee
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Wy = =m (4-17)

The approximate equations for the nth-order system

(4-1) are

For 0 < t < tg:

L 2

< 2

X, = =t + mA (4-18)

For t;, < t < tg:

2

X} = g - (21:8 + mA)t + tsz

+ 2mAtg + 1y
X9 + t - 2t8 -mA (4'19)

An expression for the switching time, t_, is obtained

8?
from the intersection of the switching curve (4-12) and
the trajectory defined by equations (4-18), The final

result is
]
tg = -]2=(b-2)m>\ + l:rl + %’;(b2+2)m2 A2 4 cm?\]

(4-20)
A condition that has to be satisfied by the trajec~
tory (4-19) is that it should reach the origin at the
final time, tg, In other words, X;(tg) = Xo(tg) = 0, From
equations (4-19) this will only happen if

[
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2t + mA (4-21)
and

2 A 4-22)
+ 2m ts+r1=0 (4-22

Substituting (4-21) into (4-22) and solving for t_ gives

2,2 1%
m- A -
tB = [rl - 5 ] (4 23) i
The two expressions for tg, (4-20) and (4-23), are
zqual if
b = 2
c = -2m2 (4-24)

It turns out that this is the only choice of the constants
b and ¢ which is independent of ry and at the same time
makes equation (4-20) equal to (4-23),

Putting the constants (4-24) into the switching func-

tion (4~12) and correcting for the sign gives

£=x + % Xy !x2| + 2mA xy + 2m32_:.c_g (4-25)
%2

Remember that m = n-2, So for a third-order system m = 1,
The switching function for that case is almost in perfect
agreement with one derived by Kalman for the same system
by a completely different method (4), The only difference
ig that in (4-25) the constant multiplier of A2 is 2 while
{n Kalmans equation it is 1/2,
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Figure 2 shows two approximate switching curves for a
third-and-fourth-order system when A = 1/2, The optimal
switching curve for the second-order system is also shown
for comparison, Note that the two approximate switching
curves do not go exactly through the origin. The "miss"
at the origin is proportional to A 2, If ) is kept
smaller than one, the curves will come quite close to the

origin,

4,3 Numerical Examples

In this section the time response of the third-order
system (3-7) will be computed for two different initial
conditions and A = 0,5 using the derived switching func-
tion (4-25),

First let us choose ry = 4,125 and r, = 0, Conse-
wuently the switching time, tg, is 2 and the final time,
tg, is 4,5, The equations describing the trajectory are

given below,

For 0 < t < tg:

wl = ¢t
w2 = 1
X, = - 0.5¢2 + 4,125
x2 = «
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x1 + 05w = ~ 0,5t% 4 0,5t + 4,125

-t 4+ 0,5

+
.O
U
€
N
i

*2
For ty < t < tgi
W1=~t+4

x, = 0.5¢2 - 4t + 8,125

x, + 0.5w = 0,5t% < 4.5t + 10,125

n

x2 + 0.5W2 t - 4,5

Let the exact solution of the system of differential
equations with u switching form «1 to 41 at t = t; be
denoted by xi* for 1 = 1,2, Figure 3 shows the various
curves for this example, Note that there is an error of
about A 2 between the exact and approximate curve of x;
at t = te, Since the optimal time for the second-order
system when A = 0 is 4,06, one can see that the time
response 1s very nearly time~optimal,

As a gsecond example let us use the initial conditions
r; = 0 and ry = 2., The constants for the switching curve

were derived with zero initial conditions for X9, This
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example will illus.rate the fact that the switching curve
neveriheless is valid for non-zero initial conditions of
XZ.

Tke formulas for t; and te are easily derived in the

same way as before, The result is
tg, = 1.707r2 + 0,707
te = 2,414 (ry + A )
For this example ty, = 3,768 and te = 6,035,

The trajectory is described by the following equatione,

For 0 <t < tg:

X; + O.Sw1 = - O.St2 + 2,5¢
Xy + O.Sw2 = -t+ 2,5
For tg < t < tg:
Wl = -t + 7,536
w2=-l
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= 0,5t% - 5,535t + 14,20

t - 5,535

»
LX)
i

Xy + 05w = 0.5t% - 6,035¢ 4 17,97
Xp + 0,59, = t - 6,035

Figure 4 shows the various curves for this example, Again
the time response is a good approximation of the time-

optimal solution,
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5, SUMMARY AND CONCLUSION.

A method has been presented to derive simplified
switching functions for the design of third or higher or-
der, time-optimal control systems, They type of system,
that has been considered, is characterized by small para-
meters which increase the order of the system, The sensi-
tivity functions with respect to these small parameters
have been the main tool of analysis, Two existing methods
have been used to determine special initial conditions for
the sensitivity equations because these equations are dis-
continuous at t = 0, It has teen shown that the same
methods can be applied to deal with the discontinuity of
the sensitivity functions at the switching time by a trans-
formation of the original systenm,

A particular system has been analyzed in more detail,
The degenerate, second-order system for this case is the
well-known double integral plant, The complete switching
curve has been determined for this system, Using this
switching curve the approximate time response was computed
with the aid of sensitivity functions, The results show
that the response is nearly time-optimal,

For a system characterized by a second-order system,
which is more complicated than the double integral plant,
it might be difficult to analytically determine unique con-

stants in the switching function. In that case perhaps the

[ ¢
h
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best constants can be found experlmentally, As already in-

dicated, complex roots of the second-order system also pre-

e e

sent special problems, All these cases need further study,

for which there was no time in connection with this thesis

unfortunately.

tivity functions with respect to small parameters, that

change the system order, can be used to greatly simplify
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I‘ This investigation above all demonstrates how sensi-

the analysis of higher order systems,
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